
Finding Near-optimal Solutions in Multi-robot 
Trajectory Planning

Michal Čáp (CTU in Prague), Peter Novák (TU Delft), Alexander Kleiner (iRobot Inc.) 

Let us have an environment with obstacles occupied by 
n robots. Given a start position, destination position 
and a cost function for each robot, find the trajectories 
for the robots that are mutually collision-free and the 
sum of their cost is minimal. 

Even the non-optimal formulation is NP-hard [1].

s1

g1

s2

g2

s1

g1

s2

g2

Input Solution

Problem

References
[1] Paul G. Spirakis and Chee-Keng Yap. Strong np-hardness of moving 
many discs. Inf. Process. Lett., 19(1):55–59, 1984.
[2] Subhrajit Bhattacharya, Vijay Kumar, and Maxim Likhachev. Distributed 
optimization with pairwise constraints and its application to multi-robot 
path planning. RSS 2010
[3] Standley, Trevor Scott, "Finding Optimal Solutions to Cooperative 
Pathfinding Problems.", AAAI Press (2010).
[4] Van Den Berg, Jur and Guy, Stephen and Lin, Ming and Manocha, 
Dinesh, "Reciprocal n-body collision avoidance", Robotics Research (2011).

Acknowledgements
This work was supported by the Grant Agency of the Czech Technical 
University in Prague grant SGS15/160/OHK3/2T/13.

k-step Penalty Method

Inspired by a distributed optimization approach [2] 
previously applied to the multi-robot Rendezvous 
problem.

Starts from individually optimal trajectory for each 
robot, which are then penalized for being in collision 
with other robots. The penalty is gradually increased 
and the individual trajectories are iteratively replanned 
to account for the increased penalty until a collision-
free solution is found.

0 5 10 15 20 25 30
0

2

4

6

8

10

1.5 1.0 0.5 0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

Penalty function:

Weight sequence:

Experimental Evaluation

Results:

Compared algorithms:

Scenarios:

OPTIMUM

PP
(avg. from 53 instances)

−2

−1

0

0 25 50 75 100
k

Su
bo

pt
im

al
ity

 [%
]

Suboptimality on Scenario A

OPTIMUM

PP
(avg. from 78 instances)

−4

−2

0

0 25 50 75 100
k

Su
bo

pt
im

al
ity

 [%
]

Suboptimality on Scenario B

OPTIMUM

PP

(avg. from 52 instances)−10.0

−7.5

−5.0

−2.5

0.0

0 25 50 75 100
k

Su
bo

pt
im

al
ity

 [%
]

Suboptimality on Scenario C

0

25

50

75

100

1 2 3 4 5 6 7
No of robots

In
st

an
ce

s 
so

lve
d 

[%
]

Success rate on Scenario A

0

25

50

75

100

1 2 3 4 5 10 15 20 25
No of robots

In
st

an
ce

s 
so

lve
d 

[%
]

Success rate on Scenario B

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10
No of robots

In
st

an
ce

s 
so

lve
d 

[%
]

Success rate on Scenario C

ORCA

PP

(avg. from 18 instances)

7.5

10.0

12.5

15.0

0 25 50 75 100

k

Av
g.

 ti
m

e 
ou

ts
id

e 
go

al
 [s

]

Time out of goal, Scenario B, 10 robots

0

10

20

30

1 2 3 4 5 10 15 20 25

No of robots

Av
g.

 C
PU

 ru
nt

im
e 

[s
]

CPU runtime in Scenario B

We focus on dense instances because they require 
search in a high-dimensional joint state space and 
are therefore hard for the existing optimal 
methods. Sparse instances, on the other hand, can 
be usually split into independent low-dimensional 
subconflicts and efficiently solved separately.

Success rate: 
the percentage of instances 
successfully solved by PM(k=3, 20, 
10), PP, OD, and ORCA in each 
scenario in max 1 hour.
 

Suboptimality: 
average suboptimality of solution 
generated by PM(k=1, ..., 100) and 
PP on instances where optimum was 
known. 

CPU runtime: 
average CPU runtime to find a solution 
by PM(k=3, 20, 10) and PP.

Time out of goal: 
average difference in solution quality 
generated by PM(k=1, ..., 100 ), PP, 
and ORCA on instances with 10 robots 
in Scenario B.

PM k-step Penalty Method
(proposed approach)

PP Prioritized Planning
(popular heuristic approach)

OD Operator Decomposition [3]
(state-of-the-art optimal algorithm)

ORCA Optimal Reciprocal Collision Avoidance [4]
(state-of-the-art reactive algorithm)

k=3 k=20 k=100

Scenario A Scenario B Scenario C


