Multi-Agent RRT*: Sampling-based Cooperative Pathfinding

Michal Cap¹, Peter Novák², Jiří Vokrinek¹, Michal Pechouček¹
¹Agent Technology Center, CTU in Prague ²Algorithmics Group, TU Delft

Problem

Find an optimal set of conflict-free trajectories for n mobile agents.

Solution is a path in joint state space of all n agents:

\[J = C_1 \times \ldots \times C_n \]

where \(C_i \) is d-dimensional configuration space of agent \(i \).

Existing methods use A* to search for a path in \(J \). However, in many cases A* exhibits poor performance in \(J \), which is high-dimensional space that contains large basins of attraction to local minima. Due to the basin filling behaviour of A*, it takes long time to escape such regions during the search.

Solution

Use RRT* to search for a path in \(J \)

RRT* is a recently proposed (Karaman 2011) anytime variant of rapidly-exploring random trees (RRT), a sampling-based algorithm widely used for motion planning in high-dimensional robotic spaces.

Graph RRT* -- To allow fair comparison with the state-of-the-art anytime algorithm for cooperative pathfinding (Standley 2011), which works on graphs, we adapted RRT* to also plan on graphs.

Experiment

We generated 6000 problem instances:
- agents' motions discretized as a 4-grid
- grid sizes: 10x10, 30x30, 50x50, 70x70, 90x90
- no of agents: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- for each combination of the grid size and the number of agents, we generated 120 instances with random obstacles (obstructing 10% of space) and random start and destination positions for each agent
- each algorithm allowed max 5s to find a solution

Results

JA = A* in \(J \)
OA = Optimal Anytime (Standley 2011)
MA-RRT* = RRT* in \(J \)
isMA-RRT* = RRT* in \(J \) with sampling biased towards single-agent optimal paths

Performance

Scalability

% of instances solved / agents

% of instances solved / grid size

Acknowledgements

The research was supported by the ARTIES joint Undertaking under the number 269336-2 and by the Czech National Ministry of Education, Youth and Sports, grant no. T40021 (TESS) and by the Ministry of Education, Youth and Sports of Czech Republic within the grant no. LO1204. Further, we would like to thank Michal Stábek for his help with the experimental evaluation.

References