
Asynchronous Decentralized Algorithm for Space-Time
Cooperative Pathfinding

Michal Čáp1 and Peter Novák2 and Jiří Vokřínek1 and Michal Pěchouček1

Abstract. Cooperative pathfinding is a multi-agent path planning
problem where a group of vehicles searches for a corresponding
set of non-conflicting space-time trajectories. Many of the practi-
cal methods for centralized solving of cooperative pathfinding prob-
lems are based on the prioritized planning strategy. However, in some
domains (e.g., multi-robot teams of unmanned aerial vehicles, au-
tonomous underwater vehicles, or unmanned ground vehicles) a de-
centralized approach may be more desirable than a centralized one
due to communication limitations imposed by the domain and/or pri-
vacy concerns.

In this paper we present an asynchronous decentralized variant of
prioritized planning ADPP and its interruptible version IADPP. The
algorithm exploits the inherent parallelism of distributed systems and
allows for a speed up of the computation process. Unlike the synchro-
nized planning approaches, the algorithm allows an agent to react to
updates about other agents’ paths immediately and invoke its local
spatio-temporal path planner to find the best trajectory, as response
to the other agents’ choices. We provide a proof of correctness of the
algorithms and experimentally evaluate them on synthetic domains.

1 Introduction

When mobile agents operate in a shared space, one of the essential
tasks for them is to prevent collisions among themselves, possibly
even to maintain a safe distance from each other. Prominent examples
of domains requiring robust collision avoidance techniques are dif-
ferent kinds of autonomous multi-robotic systems, next-generation
air traffic management systems, road traffic management systems etc.

A range of methods is being currently employed to realize a
safe operation of agents within a shared space. Some of the meth-
ods assume a cooperative setting where all the involved agents
work together to solve their mutual conflicts, others assume a non-
cooperative setting where the agents cannot coordinate their actions,
and yet others consider pursuit-evasion adversarial scenarios where
a solution is a trajectory that is collision free against the worst-case
behaviour of other agents. In this work, we focus on the cooperative
pathfinding.

Cooperative path planners are used to plan the routes for a num-
ber of agents, taking in consideration the objectives of each agent
while avoiding conflicts between the agents’ paths. If the agents ex-
ecute the resulting multi-agent plan precisely, it is guaranteed that
the agents will not collide. Centralized solvers in literature are based
either on global search or decoupled planning. Global search meth-

1 FEL, Czech Technical University in Prague, Czech Republic, e-mail:
{michal.cap, jiri.vokrinek, michal.pechoucek}@agents.fel.cvut.cz

2 EEMCS, Delft University of Technology, The Netherlands, e-mail:
P.Novak@tudelft.nl

ods find optimal solutions, but they do not scale well for higher (over
ten) numbers of conflicting agents. One of the most efficient optimal
solvers for cooperative pathfinding on grids has been introduced by
Standley in 2010 [8].

Decoupled approaches are incomplete, but can be fast enough for
real-time applications e.g., in the video-game industry. One of the
the standard technique employed in gaming is the Local Repair A*
(LCA*) algorithm [7]. In LCA* each agent plans a path indepen-
dently and tries to follow it to the goal position. If a collision occurs
during the path plan execution, the agent replans the remainder of
the route from the collision position taking into account the positions
in its vicinity occupied by the other agents involved in the collision.
Due to its greedy and reactive nature, the method does not perform
well in cluttered environments with bottlenecks and can generate cy-
cles, or otherwise aesthetically unpleasant, or inefficient behaviours
of agents [6]. To mitigate these problems, Silver [7] introduced Co-
operative A* (CA) a cooperative pathfinding algorithm based on the
idea of prioritized planning [3].

In prioritized planing, each agent is assigned a priority and the
planning process proceeds sequentially agent after agent in the or-
der of the agents’ priorities. The first agent plans its path using
a single-agent planner disregarding the positions and objectives of
other agents. Each subsequent agent models the paths of the higher-
priority agents as moving obstacles and plans its path such that the
collisions with the higher-priority agents’ paths are avoided. Such an
approach has been shown to be effective in practice [4]. The quality
of the generated solution is sensitive to the assigned priority ordering,
however there is a simple heuristic for choosing an efficient ordering
for the prioritized planning [9].

Recently, Velagapudi presented a decentralized prioritized plan-
ning technique for large teams of mobile robots [10]. The method is
shown to generate the same results as the centralized planner. How-
ever, the formulation of the decentralized algorithm is based on the
assumption that the robots have a "distributed synchronization mech-
anism allowing them to wait for all team mates to reach a certain
point in algorithm execution" [10] and thus it does not exploit the
asynchrony common in distributed systems. Rather the computation
proceeds in iterations and the agents wait for each other at the end of
each algorithm iteration. As a consequence, the algorithm does pro-
ceeds in synchronous rounds, where the length of a round is dictated
by the agent performing the longest computation due to either a high
workload, or low computational resources available.

After stating the cooperative pathfinding problem and exposing
the underlying ideas of the state-of-the-art prioritized planning ap-
proaches in Sections 2 and 3, Section 4 presents the main contribu-
tion of the paper, the asynchronous decentralized prioritized plan-
ning algorithm (ADPP). ADPP, is an extension of the synchronized

decentralized prioritized planning algorithm (SDPP), which removes
the assumptions of synchronous execution of the decentralized al-
gorithm. Besides the generic form of the ADPP algorithm, we also
present a locally asynchronous modification of the ADPP algorithm
(interruptible ADPP, IADPP) enabling interruptible path planner ex-
ecution so that the individual agents can react to updates received
from their peers more swiftly. To prove termination and correctness
properties of ADPP and IADPP, we provide a new proof of termina-
tion and correctness also for the SDPP algorithm. Our proof is an al-
ternative to the original argument presented in [10]. We implemented
and extensively evaluated the discussed algorithms on a number of
synthetic scenarios. Section 5 provides both an illustrative theoreti-
cal comparison of the SDPP and ADPP approaches, as well as de-
tails the experimental evaluation of the introduced algorithms. The
experimental validations show that the asynchronous versions of the
prioritized planning algorithm offer better runtime performance, as
well as improved use of the available computational resources.

2 Cooperative Pathfinding Problem
Consider n agents a1, . . . ,an operating in an Euclidean space W .
Each agent ai is characterized by its starting and goal positions
starti, desti respectively. The task is to find a set of space-time tra-
jectories P = {p1, . . . , pn}, such that pi : R→W is a mapping from
time points to positions in W , pi(0) = starti, pi(ti) = desti and the
trajectories are mutually collision free, i.e., ∀i, j : i 6= j⇒¬C(pi, p j),
where C(pi, p j) denotes a space-time mutual collision relation be-
tween pi and p j. Informally, two trajectories collide (are in a con-
flict) when the trajectories touch, or intersect. That is pi[t ′] = p j[t ′]
for some timepoint t ′. However, more complex collision relations
can be considered, such as those considering a minimal separation
range between trajectories, etc. tdest

i = min{ti | pi[ti] = gi} denotes
the shortest timepoint in which the agent ai reaches its destination
desti. As a solution quality metric we use the cumulative time spent
by agents navigating their trajectories defined as dur(P) = ∑

n
i=1 tdest

i .

The cost of solution P is defined as cost(P) = dur(P)−dur(P′)
dur(P′) , where

P′ is the set of best trajectories for each agent if the collisions are
ignored.

3 Prioritized Planning
In general, the complexity of complete approaches to multi-agent
path planning grows exponentially with the number of agents. There-
fore, the complete approaches often do not scale-up well and hence
are often not applicable for nontrivial domains with many agents. To
plan paths for a high number of agents in a complex environment,
one has to resort to one of the incomplete, but fast approaches. A
simple method often used in practice is prioritized planning [3, 9, 1].
In prioritized planning the agents are assigned a unique priority. In
its simplest form, the algorithm proceeds sequentially and agents
plan individually from the highest priority agent to the lowest one.
The agents consider the trajectories of higher priority agents as con-
straints (moving obstacles), which they need to avoid. It is straight-
forward to see that when the algorithm finishes, each agent is as-
signed a trajectory not colliding with either higher priority agents,
since the agent avoided a collision with those, nor with lower priority
agents who avoided a conflict with the given trajectory themselves.

The complexity of the generic algorithm grows linearly with the
number of agents, which makes the approach applicable for problems
involving many agents. Clearly, the algorithm is greedy and incom-
plete in the sense that agents are satisfied with the first trajectory not

colliding with higher priority agents and if a single agent is unable to
find a collision-free path for itself, the overall path finding algorithm
fails. The benefit, however, is fast runtime in relatively uncluttered
environments, which is often the case in multi-robotic applications.
Prioritized planner is also sensitive to the initial prioritization of the
agents. Both phenomena are illustrated in Figure 1 that shows a sim-
ple scenario with two agents desiring to move from s1 to d1 (s2 to d2
resp.) in a corridor that is only slightly wider than a single agent. The
scenario assumes that both agents have identical maximum speeds.

s1s1 d2s1s1 d2 s2d2d1

s1s1 d2s1s1 d2 s2d2d1

Figure 1: Top: example of a problem to which a prioritized planner
will not find a solution. The first agent plans its optimal path first,
but such a trajectory is in conflict with all feasible trajectories of the
second agent. Bottom: example of a problem to which a prioritized
planner will find a solution only if agent 1 has a higher priority than
agent 2.

3.1 Computing best response
During prioritized planning, an individual agent searches the short-
est path to its destination considering other higher-priority agents
as moving obstacles during the planning process. Ideally, the agent
should compute the best possible trajectory, a best response to the tra-
jectories of the higher-priority agents. To find such a best response,
the agent needs to solve a motion planning problem with dynamic
obstacles, which is a significantly more complex task than the mo-
tion planning with static obstacles since a new independent time di-
mension has to be considered during planning. Henceforth, we will
denote the single-agent best-response planer process as a function
BEST-PATHi(start,dest,avoids), which returns the selected best tra-
jectory for the agent i, starting in the position start, eventually reach-
ing the position dest and at the same time not colliding with any of
the trajectories in the set avoids. Note, we do not precisely specify
what the best trajectory means, the notion can be application-specific
for the individual agent. For simplicity, however, in the following we
assume the notion of the best path to correlate with time-optimality
of trajectories, i.e., the how fast a given agent can navigate along the
trajectory given its specific motion dynamic constraints.

3.2 Centralized Algorithm
A collision-free operation of a multi-agent team can be ensured by
forcing all agents to communicate their objectives to a centralized
planner, which centrally computes a solution and informs the agents
about the trajectory they have to follow in order to maintain the
conflict-free operation. As a baseline for evaluation of performance
of the latter introduced algorithms, we use the cooperative A* algo-
rithm [7]. Cooperative A* is a centralized algorithm for cooperative
path finding based on prioritized planning employing the well-known
A* trajectory planning algorithm on grids [5]. Algorithm 1 lists the
pseudocode of the cooperative A* algorithm. We discussed the cor-
rectness of this generic algorithm above.

Algorithm 1 Centralized Prioritized Planning (Cooperative A*)

Ensure: After the algorithm finishes, Pathi contains the final com-
puted path for the agent with priority i. If the agent couldn’t find
a path not colliding with higher priority agents, Pathi stores /0.

1: procedure CA(〈start1,dest1〉, . . . ,〈startn,destn〉)
2: Avoids← /0
3: for i← 1 . . .n do
4: Pathi←BEST-PATHi(starti,desti,Avoids)
5: Avoids← Avoids∪{Pathi}
6: end for
7: end procedure

8: function BEST-PATHi(start,dest,avoids)
9: return the best path from start to dest not conflicting with

10: any of the paths in avoids. Otherwise return /0.
11: end function

3.3 Decentralized Algorithms

A decentralized algorithm for solving cooperative pathfinding prob-
lems by means of prioritized planning has been presented in [10].
The algorithm is synchronous in that it contains synchronization
points in the program execution through which all agents proceed
simultaneously. Due to the synchronous nature of the algorithm, we
will refer to this algorithm as synchronized decentralized prioritized
planning (SDPP). Algorithm 2 lists the pseudocode of SDPP. We
slightly adapted the algorithm listing for exposition purposes and
comparison with the later introduced algorithms. Note that in the de-
centralized setting we assume communication to be reliable and the
communication channel preserves the order of messages they were
sent in. Furthermore, the algorithm assumes that before the start of
the algorithm, each agent is assigned a unique priority, an ordinal
I ∈ 1 . . .N, where N is the number of agents taking part on the algo-
rithm run (the lowest I means the highest priority). The algorithm is
also locally asynchronous and we assume safe (thread-safe) access to
global variables (denoted by capitalized identifiers). To simplify the
exposure, the thread-barrier locking mechanism is omitted from the
pseudocode.

The algorithm proceeds in iterations. In each iteration the agents
compute the best path if necessary and subsequently communicate
it to the lower priority agents. An agent must recompute its trajec-
tory in the case its current path collides with some trajectories of
higher priority agents computed and communicated in the previous
iterations. Upon receiving an INFORM message, the agent simply re-
places the information about the trajectory of the sender agent in
its Agentviewi set. Note, the algorithm is asynchronous, therefore
the trajectory planning routine BEST-PATHi operates on a copy the
Agentviewi set.

The algorithm finishes when all the agents cease to communicate
and either hold a trajectory, or they were not able to find a collision-
free trajectory. We assume that the global termination condition is
detected by some concurrently running global state detection algo-
rithm, such as the Chandy and Lamport’s snapshot algorithm [2].

The presented SDPP algorithm is correct in that when it finds a
solution for all the participating agents, the paths are mutually colli-
sion free. However, the algorithm is incomplete in the sense that there
are situations when the algorithm fails to find a solution for all the
participating agents, even though such a solution exists. In order to
facilitate and simplify exposition of the later introduced algorithms,
we developed a new alternative proof of the SDPP algorithm, which

Algorithm 2 Synchronized Decentralized Prioritized Planning
. pseudocode for the agent i /

Ensure: After the algorithm finishes, Pathi contains the final com-
puted path. If no solution was found, Pathi stores /0.

1: procedure SDPP(start,dest,nagents,priority)
2: Starti← start; Desti← dest
3: N← nagents; I← priority
4: Agentviewi← /0; Pathi← /0
5: repeat
6: CHECK-CONSISTENCY-AND-PLAN

7: wait for all other agents to finish the planning iteration
8: until global termination detected
9: end procedure

10: procedure CHECK-CONSISTENCY-AND-PLAN

11: if Pathi collides with Agentviewi then
12: . Work on a copy of the Agentviewi /
13: Pathi←BEST-PATHi(Starti,Desti,Agentviewi)
14: for all j← I +1 . . .N do
15: SEND-INFORM-TO- j(I,Pathi)
16: end for
17: end if
18: end procedure

19: message handler RECEIVE-INFORM(j, path)
20: Agentviewi← (Agentviewi \ 〈 j,_〉)∪{〈 j,path〉}
21: end message handler

deviates from the original one devised by the authors of SDPP [10].
To see the correctness of the SDPP algorithm we need to show that

firstly, the algorithm terminates, and secondly that the resulting paths
are mutually collision free.

Proof (SDPP termination):. First of all, we need to show that the
algorithm finishes. That is, each agent i eventually stops sending IN-
FORM messages. We proceed by induction on the individual agent
priority i.

initial step since there is no agent with priority higher than agent
a1, the highest priority agent a1 informs the lower priority agents
only once in the first iteration of the algorithm and from then on it
remains silent since its path will always be non-colliding with an
empty set of paths - there are no higher priority agents to inform
this agent about an update of the situation.

induction step Let’s assume the following induction hypothesis:
“after the agents with priorities 1 . . .k− 1 stopped communicat-
ing, eventually also the agent with priority k stops sending IN-
FORM messages”. Let’s assume this is not the case and there is
a situation such that the agent k would end up sending INFORM

messages forever. For such to occur, the agent however must have
its mailbox continually being filled with INFORM messages so
that it’s RECEIVE-INFORM handler routine gets invoked infinitely
many times. In a consequence the agent would possibly need to
recompute its best path and subsequently inform the lower pri-
ority agents infinitely often. That however implies existence of
a sender for each such a message and hence by necessity there
must be at least one agent with priority higher than k which keeps
sending INFORM messages forever, which contradicts the induc-
tion hypothesis.

As a consequence of the consecutive silencing of agents from high
to lower priorities, it’s also relatively straightforward to see that the
SDPP algorithm makes at most N iterations before it terminates.

Note, that not necessarily it is the agent with the lowest priority
which stops communicating the last. In the case a lower priority agent
computes a route which is not in a conflict with a current set of tem-
porary routes of the higher priority agents, nor with any routes they
will compute later on, its reactions to receiving INFORM messages
will be silent and won’t result in further cascade of communication.

Proof (SDPP correctness):. To see that after the algorithm termina-
tion the variables Pathi store a set of non-conflicting paths is rather
straightforward. Since each agent eventually sends its last INFORM

message and cedes to communicate, each agent with priority lower
than its own eventually collects all the last INFORM messages from
all the higher priority agents, together with their ultimate paths (being
either a valid path, or /0). At that moment, all the couples 〈 j,Path j〉
for all j > i are stored in the set Agentviewi of the agent with
priority i. Subsequently the agent eventually invokes the CHECK-
CONSISTENCY-AND-PLAN routine for the last time and thus either
Pathi will end up unchanged, recomputed and again non-conflicting
with either of 〈 j,Path j〉 for all j < i, or being invalid (/0). Finally, the
agent informs all the agents with priorities lower than i and cedes to
communicate. At the moment when the last agent stops communi-
cating, all the Pathi variables are either set correctly, or the algorithm
failed to find a solution for some of the participating agents.

As we already noted above, the SDPP algorithm is incomplete.
To see that, consider a situation in which the agent with the highest
priority makes a choice which later on constraints some of the lower
priority agents so that they are unable to find a solution. In the case
there would be a locally worse choice for the highest priority agent,
which however would enable the lower priority agents to find valid
solutions, the SDPP algorithm does not facilitate re-consideration of
the first choice, nor some backtracking mechanism.

During the algorithm computation, it can however happen that an
agent i sets its Pathi to /0 and later reconsiders this decision. This
happens when among paths of the higher priority agents there are
conflicting couples, but those agents did not manage to resolve the
collisions yet and at the same time the lower priority agent i is tem-
porarily not able to route around the space occupied by the temporary
paths of the higher priority agents.

Note that in the distributed prioritized planning, one can use a sim-
ple marking-based termination-detection mechanism. Following the
proof of termination, agent i can mark its path final if the path of
agent priority i− 1 in Agentviewi is marked final. The initial path
of a1 is final. When an agent sends his final path to a lower-priority
agent, the higher-priority agent can safely terminate its computation.
When the final path is generated by the lowest-priority agent, the
computation terminated globally.

4 Asynchronous Prioritized Planning

The SDPP algorithm does not fully exploit the parallelism of the
distributed system, a drawback stemming from its synchronous na-
ture. The running time of a single iteration of the SDPP algorithm is
largely influenced by the speed of the computationally slowest agent
of the group. In every iteration, the agents which finished their tra-
jectory planning routine faster, or did not have to re-plan at all sit
idle while waiting for the agents with higher workload in that itera-
tion (or simply slower computation), even though they could theoret-

Algorithm 3 Asynchronous Decentralized Prioritized Planning
. pseudocode for the agent i /

1: procedure ADPP(start,dest,nagents,priority)
2: Starti← start; Desti← dest
3: N← nagents; I← priority
4: Agentviewi← /0; Pathi← /0
5: repeat
6: CheckFlagi← false
7: CHECK-CONSISTENCY-AND-PLAN

8: wait for CheckFlagi , or global termination
9: until global termination detected

10: end procedure

11: message handler RECEIVE-INFORM(j, path)
12: Agentviewi← (Agentviewi \ 〈 j,_〉)∪{〈 j,path〉}
13: CheckFlagi← true
14: end message handler

ically resolve some of the conflicts they have among themselves in
the meantime and thus speed up the overall algorithm run.

To improve the performance of the decentralized cooperative path
finding, we propose an asynchronous decentralized prioritized plan-
ning algorithm (ADPP), an asynchronous variant of SDPP. Algo-
rithm 3 lists the pseudocode of ADPP.

The main deviation from the SDPP listed in Algorithm 2 is the
formulation of the waiting condition in the main loop of the algo-
rithm. While each agent of the group waits for all the other to finish
in the SDPP algorithm, in the ADPP algorithm, they break their idle
upon receiving the next INFORM message or a need to process up-
dated Agentviewi, in the case the agent received a number of INFORM

messages during the time it was occupied with planning its own tra-
jectory. The arrival of a new INFORM message and thus the need to
re-check the consistency of the currently computed path with respect
to the new information is indicated by the state of the CheckFlagi
variable.

The proof of correctness of the ADPP algorithm follows exactly
the correctness proof of the SDPP algorithm above. Note, in the
SDPP proof, the condition that the algorithm proceeds in a synchro-
nized manner was never exploited. The ADPP algorithm terminates
for exactly the same reasons as SDPP. Namely, the agent with the
highest priority stops communicating right after it computes its path
for the first time and in consequence the agents with lower priority
consecutively cede to communicate later on as well until the algo-
rithm terminates. The argument for ADPP incompleteness follows
the incompleteness argument for SDPP as well.

Interruptible ADPP

The ADPP algorithm exploits the potential speed up with respect to
the inter-agent communication. However, while the agent is comput-
ing the best path in the current situation, messages keep arriving.
In a consequence, it can happen that an individual agent’s compu-
tation returns from the path planning routine BEST-PATHi only to
find out that large part of the work was invalidated by some later
received messages. This reveals a potential further speed-up of the
ADPP algorithm by interrupting the path planning upon reception
of every INFORM message and re-considering the computation in
the light of the newly received message. Algorithm 4 lists a pseu-
docode of a modified ADPP algorithm which pro-actively interrupts
the trajectory planning computation upon receiving every new IN-
FORM message. Alternatively, it is conceivable to exploit algorithms

Algorithm 4 Interruptible Asynchronous Decentralized Prioritized
Planning - pseudocode for the agent i

1: procedure IADPP(start,dest,nagents,priority)
2: Starti← start; Desti← dest
3: N← nagents; I← priority
4: Agentviewi← /0; Pathi← /0
5: CHECK-CONSISTENCY-AND-PLAN

6: wait for global termination
7: end procedure

8: message handler RECEIVE-INFORM(j, path)
9: Agentviewi← (Agentviewi \ 〈 j,_〉)∪{〈 j,path〉}

10: asynchronously launch/restart {
CHECK-CONSISTENCY-AND-PLAN}

11: end message handler

for dynamic trajectory planning, which allow topological changes
during the planning process.

Note, the main repeat-until loop was replaced by simple wait
for the algorithm termination. The repeated consistency check (calls
of the CHECK-CONSISTENCY-AND-PLAN routine) is secured by its
asynchronous invocation from the RECEIVE-INFORM routine. That
is, the routine is executed in a newly created computation run (thread)
and the call does not wait for its termination, it runs in parallel to
the RECEIVE-INFORM routine from then on. In the case there is al-
ready a concurrent invocation of the CHECK-CONSISTENCY-AND-
PLAN routine running, it is killed and run anew (restarted) with the
updated Agentviewi set.

The termination and correctness of the IADPP algorithm stems
from the termination and correctness of the ADPP algorithm. The
same proof applies, since the IADPP modification was strictly local,
not affecting the communication patterns between the participating
agents.

5 Evaluation

The motivation for introducing the decentralized algorithm and its
asynchronous variants is oriented mainly to the runtime improve-
ments of the algorithm. Clearly, such a potential improvement is
greatly influenced by the topology of the problem and the selection
of agent priorities. In this section, we first discuss the noticeable fea-
tures of the presented algorithms and our expectation on their perfor-
mance. Then, we will present experimental evaluations using super-
conflict and randomly generated scenarios.

5.1 Theoretical analysis

As indicated above, the decentralized approaches should benefit from
the concurrent execution on a higher number of processors (i.e.,
equal, or higher than the number of agents). The wall-clock run-
time of the algorithms is expected to be lower for decentralized algo-
rithms, but there might exist some problem configurations that yield
directly opposite results. In this section we sketch a theoretical anal-
ysis of the impact of the parallelism and asynchronicity and show
examples to demonstrate the presented ideas.

Let us first discuss the differences between the centralized and de-
centralized approaches. For simplicity, let the processing time of the
best-path search routine be one time unit for each path searched (one
path for one agent). Figure 2 illustrates an example of the algorithm
execution sequence for three agents, where priorities of the agents

are given from left to right and match the agent indices. The cen-
tralized algorithm simply computes the agents’ paths sequentially in
the order of agents’ priorities. The total wall-clock runtime is 3 time
units here.

To analyze the algorithm runs in decentralized scenarios, consider
a scenario where the agents have non-conflicting trajectories and a
superconflict scenario, in which the best trajectories of all the agents
collide. In a distributed setting, we assume three parallel processors,
i.e. one for each agent. In the case of non-conflicting trajectories the
agents should be able to fully utilize the inherent parallelism of the
distributed system, so that the wall-clock runtime of the algorithm is
only one time unit. However, in the case of superconflict scenario
the situation is different. Each lower-priority agent has to recom-
pute his path when a higher-priority agent produces a new solution.
Clearly, the parallel execution has no speed-up effect here since the
wall-clock runtime stays 3 time units. This example provides an in-
tuition for the bounds of the decentralized algorithm execution time.
One would expect that the wall-clock runtime of a decentralized al-
gorithm will be equal or lower than the execution time of the cen-
tralized algorithm depending on the scale of coupling between the
agents. That is, informally, on the size of a cluster in which agents’
trajectories influence each other.

a1 a2 a3

(a)

a1 a2 a3

(b)

a1 a2 a3

(c)

Figure 2: Example of the path search execution sequence for (a)
centralized algorithm, (b) decentralized algorithm for non-colliding
trajectories problem and (c) decentralized algorithm for mutually-
colliding trajectories problem. The boxes represent invocations of
best-response planners.

However, the situation changes if we assume non-uniform run-
times of the agents’ best-response planers. In such a situation, SDPP
may suffer from significant synchronization overheads. Figure 3
illustrates the difference between the synchronous and the asyn-
chronous variant of the decentralized approach. In this example
ADPP exploits existence of independent conflict clusters and is able
to lower the total wall-clock runtime from 5 to 4 time units. Main
distinguishing feature of the ADPP algorithm over SDPP is that in
ADPP an agent starts resolving conflicts immediately after the agent
detects them, while in SDPP the conflicts are resolved in the next it-
eration of the algorithm. Since the duration of one SDPP iteration
is determined by the slowest computing agent, the computational
power of faster computing agents may stay unutilized. This example
illustrates how can be the wall-clock runtime reduced by the asyn-
chronous algorithm.

The interruptible variant of ADPP strengthens the asynchronous
aspect of the ADPP. Figure 4 shows a another example of the decen-
tralized algorithms execution sequence. The total running time is 5
time units for SDPP and ADPP while IADPP is able to shorten the
execution to 4 time units.

5.2 Experimental evaluation
We compare the centralized CA, SDPP, ADPP and IADPP on a few
variants of superconflict scenario and on a series of randomly gen-
erated problem instances. The experiments were performed on Intel

Figure 3: Sequence diagram showing the execution of SDPP resolu-
tion process and ADPP resolution process for a scenario with two in-
dependent conflict clusters, where agents in {a1,a2} and {a3,a4,a5}
need different amount of time to find their best response.

SDPP

a1 a2 a3

sync

sync

sync

a1 a2 a3 a1 a2 a3

IADPPADPP

Figure 4: Sequence diagram illustrating how can be wall-clock run-
time further reduced by interrupting the best-response planning.

Core 2 Duo @ 2.1 Ghz. The problem instances used have the fol-
lowing common structure. A given number of agents n operate in a
shared 20 m x 20 m 2-d square space. The agents generate a space-
time trajectory between their start and the destination position using
a 4- or 8- connected grid graph. The agents can move on the edges of
the graph with the constant speed of 1 m/s or they can wait for 0.5 s
on any of the vertices in the graph. The wait “move” can be used re-
peatedly. The agents are required to maintain the separation distance
0.8 m from all other agents at all times, even after they reached their
destination.

The best-response planner used by all the agents is a spatio-
temporal A* planner operating over the grid graph, where the heuris-
tic is the time needed to travel the euclidean distance from the current
node to the destination node at the maximum speed. All the com-
pared algorithms use the identical best-response planner.

To measure the runtime characteristics of the execution of de-
centralized algorithms, we emulate the concurrent execution of the
algorithms using a discrete-event simulation. The simulation mea-
sures the execution time of each message handling and uses the
information to simulate the concurrent execution of the decentral-
ized algorithm as if it is executed on n independent computers.
In the simulation we assume zero communication delay. The con-
current process execution simulator was implemented using Alite
multi-agent simulation toolkit. The complete source code of the ex-
perimental environment (including the concurrent process simula-
tor) and the video recordings of the experiments are available at
http://labe.felk.cvut.cz/~mcap/adpp/.

Superconflict scenarios
We performed a number of experiments on a few variants of a chal-
lenging superfconflict scenario. In the superconflict scenario, the
agents’ start positions are put evenly spaced on a circle and their goal
positions are exactly at the opposite side of the circle. Therefore, the
agents’ nominal trajectories all cross in the center of the circle. The
superconflict scenario is considered a challenging benchmark since
each agent participating in one superconflict circle is in conflict with
all other agents of that circle. Due to this coupling, the problem can-
not be easily split into independent subproblems and solved in par-
allel. In our implementation, the agents plan their trajectory using a

60x60 8-connected grid graph. We evaluated the algorithms on the
following variants of superconflict scenario:

Single supercoflict scenario with a 4 meters-wide superconflict of 8
agents placed in the middle of the square space. Agents’ starting
configuration and the final trajectories obtained from IADPP are
depicted in Figure 5a. Note that A00 is the highest priority agent
in all our experiments.

Four homogeneous superconflicts scenario with four independent
superconflicts of 8 agents (4 meters wide). This scenario allows
the cooperative pathfinding problem to be split into four indepen-
dent parts and thus the decentralized algorithms have an oppor-
tunity to exploit the computational power of more processor (see
Figure 5b).

Four heterogeneous superconflicts scenario that combines two su-
perconflicts of four agents (4 meters wide) and two superconflicts
of eight agents (only 2 meters wide). The former two have bigger
radius than the latter two and thus we expect that the best-response
planner invocations in the first group of superconflicts will take on
average longer to finish than the planners of the agents from the
second group. Such a difference in planning times leads to an in-
efficient execution of SDPP, since the slowest progressing cluster
of conflicts limits the speed at which the other conflict clusters
are resolved. The asynchronous algorithm can resolve each of the
superconflicts at a different pace and thus we expect ADPP and
IADPP to converge faster than SDPP (see Figure 5c).

Spiral superconflict scenario is a superconflict of eight agents,
where the distance between an agent’s start position and the cen-
ter of the superconflict increases with each agent. In our scenario
the radius varies between 2 m and 6 m. In result, the higher pri-
ority agents often finish planning before the lower priority agents
and since all the agents are in mutual conflict, the planning pro-
cess of the lower priority agents is often invalidated. In both SDPP
and ADPP, the planning cannot be interrupted, and the agent will
adapt to the new situation only after the currently running planning
process finishes. Since the interruptible version of ADPP is de-
signed to mitigate this problem, we expect that it will outperform
the other decentralized methods in the scenario (see Figure 5d).

Table 1 shows the wall-clock runtimes of the four evaluated al-
gorithms in the four presented scenarios. For the single supercon-
flict scenario, ADPP and IADPP runtimes are close to CA, but SDPP
shows significant synchronization overheads. The second scenario in
fact contains four independent instances of the single superconflict
as used in the first scenario. The total complexity of this problem is
expected to be four times higher than that of the first scenario. The
runtime of CA is more than quadrupled, while the runtime of the de-
centralized algorithms stays almost unchanged, which indicates per-
fect parallelization of the solution search process. In the heteroge-
neous variant of the last scenario, the situations looks different. As
we can see from CA, the total complexity of the problem is slightly
lower than that of the first scenario. Due to the differences in average
planning times in the individual superconflicts, the wall-clock run-
time in SDPP is dominated by the slowest progressing superconflict.
We can see that both ADPP and IADPP can handle the heterogene-
ity well. The spiral superconflict is a challenging scenario for the
non-interruptible asynchronous method. Thus, the ADPP wall-clock
runtime is closer to that of SDPP.

(a) Single superconflict scenario example.

(b) Four homogenous superconflicts scenario example.

(c) Four heterogeneous superconflicts scenario example.

(d) Spiral superconflict scenario example.

Figure 5: Superconflict scenarios example – problem configurations
(left) and solutions from IADPP algorithm (right).

CA SDPP ADPP IADPP
single superconflict 10.30 s 26.24 s 11.91 s 9.50 s

four homogeneous superconflicts 45.81 s 26.97 s 13.86 s 11.62 s
four heterogeneous superconflicts 9.084 s 16.01 s 4.89 s 2.59 s

spiral superconflict 6.15 s 21.02 s 17.64 s 3.77 s

Table 1: Wall-clock runtimes for four versions of superconflict sce-
nario (averaged over 10 runs)

Figure 6: One instance of random scenario with 90 agents. The start
and goal position of each agent are depicted on the left, the final
solution found is on the right.

Random scenario
We measured the wall-clock runtime, communication complexity
and solution quality of the four algorithms CA, SDPP, ADPP and
IADPP on a series of problem instances that varied in the number
of agents from 30 to 100. The start and goal vertices for each agent
in the scenario were selected randomly (see Figure 6). The distance
between the start and goal position was taken uniformly from the in-
terval (5,10) and we further asserted that no two agents share the
start node and no two agents share the destination node. The agents
plan their trajectory on a 20x20 4-connected grid graph. For each
number of agents we ran 10 different random scenarios and aver-
aged the results. When any of the algorithms failed to find a solution
to a problem instance, the problem instance was excluded from the
experiment.

The wall-clock runtime represents the real-world time a particular
algorithm would need to converge to a solution. The wall-clock time
for CA is equal to its CPU-time and can be measured directly. The
average wall-clock runtime of the three decentralized algorithms on
random scenarios with n agents was obtained by running an n concur-
rent processes simulation of the algorithm execution. The results for
the wall-clock runtime experiment are shown in Figure 7a. We can
see that all decentralized algorithms can offer a speed-up over the
centralized solver. Further, we find that ADPP and IADPP provide
comparable wall-clock runtime performance, which is significantly
better than the runtime performance of SDPP, especially in dense
problem instances with many conflicting agents.

Further, we measured the communication complexity by counting
the messages each of the algorithms broadcasts during the execution.
The communication complexity of the CA algorithm is computed an-
alytically. We assume that the algorithm is used to coordinate paths
in a distributed system in the following way. All the agents are re-
quired to communicate their objectives to the central solver. When
the central solver finishes the planning, it informs each agent about
its new path. Thus, we use 2n as the communication complexity of
the centralized solver. In Figure 7b we can see that the decentral-
ized algorithms start exceeding the communication complexity of the
centralized solution for scenarios with more than 60 agents. Further,
we find that IADPP algorithm has lower communication complexity
than ADPP. This can be explained by looking at how the two algo-
rithms react to an inform message that invalidates the current run-
ning planning effort. In ADPP, the planning is finished, the new plan
broadcast and only after that a new planning is started. In IADPP, the
planner is restarted quietly, yielding no extra communication.

Figure 7c shows the quality of the generated solutions. The rea-
son why decentralized algorithms return on average slightly worse
solutions than the CA algorithm lies in the replanning condition used
by the decentralized algorithms. The condition states that an agent
should replan his trajectory only if the trajectory is inconsistent with

his agentview. In result, the agent may receive an updated trajectory
from a higher-priority agent that allows for improvement in his cur-
rent trajectory, but since the trajectory may be still consistent, the
agent will not exploit such an improvement opportunity.

Finally, Figure 7d shows the failure rates of the individual algo-
rithms as a function of the number of agents in a scenario.

6 Conclusion
In this paper we introduced an asynchronous decentralized prior-
itized planning algorithm for space-time cooperative pathfinding
problem. Two variants of the algorithm, ADPP and IADPP, were
presented. We proved the correctness and termination of both intro-
duced algorithms. The algorithms were compared to both central and
decentralized state-of-the-art techniques for prioritized planning. Ex-
perimental validation and evaluation showed the benefits and limita-
tions of the discussed algorithms. The experiments show the advan-
tages of asynchronous and interruptible execution of the presented
algorithms on a set of superconflict scenarios.

The large scale evaluation on a set of random problem instances
documents a significant reduction of average wall-clock runtime of
both ADPP and IADPP in comparison to the centralized (approx.
65% time reduction) and the decentralized synchronous algorithm
(approx. 45% time reduction). The communication complexity is the
worst for ADPP, while IADPP is still better than SDPP, but worse
than CA for higher numbers of agents. The average cost of generated
solutions is similar for all decentralized algorithms and only approx.
10% worse than CA. The failure ratio of all prioritized methods is
comparable. The experimental validation fully supports the expecta-
tions on the improvements of the ADPP and IADPP over both CA
and SDPP.

Acknowledgements This work was supported by the Ministry
of Education, Youth and Sports of Czech Republic within the grant
no. LD12044.

References
[1] M. Bennewitz, W. Burgard, and S. Thrun. Finding and optimizing

solvable priority schemes for decoupled path planning techniques for
teams of mobile robots. Robotics and Autonomous Systems, 41(2):89–
99, 2002.

[2] K. Mani Chandy and Leslie Lamport. Distributed snapshots: determin-
ing global states of distributed systems. ACM Trans. Comput. Syst.,
3(1):63–75, February 1985.

[3] Michael Erdmann and Tomas Lozano-prez. On multiple moving ob-
jects. Algorithmica, 2:1419–1424, 1987.

[4] Carlo Ferrari, Enrico Pagello, Jun Ota, and Tamio Arai. Multirobot mo-
tion coordination in space and time. Robotics and Autonomous Systems,
25(3-4):219 – 229, 1998.

[5] N. J. Nilsson P. E. Hart and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems,
Science, and Cybernetics, SSC-4(2):100–107, 1968.

[6] Dave Pottinger. Implementing coordinated movement. Game Devel-
oper, 2007.

[7] David Silver. Cooperative pathfinding. In AIIDE, pages 117–122, 2005.
[8] Trevor Scott Standley. Finding optimal solutions to cooperative

pathfinding problems. In Maria Fox and David Poole, editors, AAAI.
AAAI Press, 2010.

[9] Jur P. van den Berg and Mark H. Overmars. Prioritized motion planning
for multiple robots. In IROS, pages 430–435, 2005.

[10] Prasanna Velagapudi, Katia P. Sycara, and Paul Scerri. Decentralized
prioritized planning in large multirobot teams. In IROS, pages 4603–
4609. IEEE, 2010.

30 40 50 60 70 80 90 100 110 120
0

0,5

1

1,5

2

2,5

CA
SDPP
ADPP
IADPP

Number of Agents

W
a

llc
lo

ck
 R

u
n

tim
e

 (
s)

(a) Average wall-clock runtime for n-agent random scenario

30 40 50 60 70 80 90 100 110 120
0

50

100

150

200

250

300

350

400

450

CA
SDPP
ADPP
IADPP

Number of Agents

N
u

m
b

e
r

o
f M

e
ss

a
g

e
s

(b) Average messages broadcasted

30 40 50 60 70 80 90 100 110 120
0

0,05

0,1

0,15

0,2

0,25

CA
SDPP
ADPP
IADPP

Number of Agents

C
o

st
 (

s)

(c) Average cost (prolongation of trajectories)

30 40 50 60 70 80 90 100 110 120
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

CA
SDPP
ADPP
IADPP

Number of Agents

F
a

ile
d

 In
st

a
n

ce
s/

A
ll

In
st

a
n

ce
s

ra
tio

(d) Failed instances ratio

Figure 7: Results from the random scenario

