
Communication- and Computation- Bounded
Agents in Multi-Agent Simulations

Michal Čáp, Jǐŕı Vokř́ınek, and Antońın Komenda

Agent Technology Center
Gerstner Laboratory – Agent Technology Center

Department of Cybernetics
Faculty of Electrical Engineering

Czech Technical University in Prague
Technická 2, 16627 Praha 6, Czech Republic

{cap,vokrinek,komenda}@agents.felk.cvut.cz

Abstract. This paper proposes a mechanism for simulating limited com-
munication bandwidth and processing power available to an agent in
multi-agent simulations. Although there exist dedicated tools able to
simulate computer networks, most multi-agent platforms lack support
for this kind of resource allocation. We target such multi-agent plat-
forms and offer an easy method to implement the missing functionality
by the agent designer. The introduced method assigns two additional
message buffers to each agent, which are used to (i) limit the number of
messages an agent is able to send in one simulation round, and (ii) limit
the number of messages an agent is able to process in one simulation
round.

1 Introduction

Multi-agent simulation is a simulation of (physical) entities controlled by agent-
based models.1 Such a simulation can be used in two different context. Economist,
biologists, and social scientists often use multi-agent simulation as a specific sim-
ulation model in which the designer explicitly defines the process by which agents
(actors) in the simulation make their decisions. Complex behaviour of the simu-
lated system emerges from the micro-behaviours of its individual agents. Many
tools exist that facilitate development of such simulations, e.g. NetLogo [8] or
MASON [2].

An alternative view sees a multi-agent simulation as an evaluation tool for
agent based systems. Under this interpretation, the simulation is used to evalu-
ate/predict the applicability of the given agent-based solution in the real world.
An example of such a platform is AgentFly simulation [6], which simulates the
behaviour of a number of aircraft in U.S. national airspace in order to evalu-
ate the performance of agent-based deconfliction algorithms developed within

1 In the following text, we will call an entity controlled by an agent-based model simply
an agent.



AgentFly project [7]. The work presented in this paper is mainly relevant to this
interpretation of the term.

The two following problems typically arise in multi-agent simulations. Firstly,
the computational and communication resources available to each agent are dis-
tributed unequally over the multi-agent system. Often, agents residing on a fast
computer can use more computational power than the entities residing on a slow
computer. Secondly, the computational power and communication bandwidth an
agent can use in a simulation do not reflect the capabilities of the hardware and
the communication channel the agent would have used in the real world. There
are domains in which such discrepancies between simulated environment and
real environment seriously harm predicative value of a simulated deployment of
the multi-agent system.

The ability to constrain the execution of individual agents is a fundamental
requirement especially in distributed or asynchronous simulations, where each
agent may run on a different computer. In such a situation, the simulation engine
has to guarantee a fair distribution of processing power among the agents even if
the agents run in non-deterministic, heterogeneous computational environments
connected by dissimilar communication links.

1.1 Agents in Simulation

As mentioned earlier, this paper focuses on multi-agent simulations that are
used to evaluate performance of agent-based systems. Therefore, we consider an
agent as a system that interacts with a simulated environment. We assume that
an agent is defined in terms of the agent’s internal state and a sense-reason-act
cycle that continuously updates the agent’s internal state. The agent perceives
the state of the environment using its sensors and it makes interventions in
the environment using its effectors. The agent interacts with the other agents
via the environment or using the agent communication channel provided by the
agent platform. The described model is depicted in Figure 1. In the scope of
this article we see agents as software entities developed on top of some (existing)
agent platform.

2 Related Work

There is a number of platforms that facilitate the development of agent based
systems. Agent development platforms mainly provide agent life-cycle manage-
ment, message transport support, and debugging tools. Some of the platforms
also provide support for distribution of the multi-agent system across different
computers. An exhaustive list of agent development frameworks can be found
in [10]. An example of a popular, Java based agent development framework of
this kind is JADE [9]. To our knowledge, however, none of the existing agent
frameworks provides the support for bounding the communication bandwidth
and/or processing power available to an agent.



Fig. 1. Multi-agent System Architecture

Looking from another perspective, the research area of network simulators is
a well established one. Several software tools have been developed (e.g. ns-3 [11]
or CORE [12]) able to faithfully emulate the behaviour of a modelled network,
including the parameters such as link throughput, latency, error rate etc. Al-
though these simulators provide high fidelity simulation of network properties,
they are by no means agent-oriented. An integration with one of the agent en-
abling platform seems to be a non trivial problem. However, there is a recently
started project AHOY [13] that aims to employ network simulators of this kind
in multi-agent simulations.

The mechanism we propose is a pragmatic one. It allows a programmer
to choose an agent platform and extend it with a simple communication- and
computation- bounding functionality with relatively little effort.

3 Message Buffer Based Approach

The proposed mechanism is based on the idea of limiting the number of messages
an agent is able to receive and send in a given period of time. The method is
implemented in the message transport layer of an agent platform and controls
how the individual agents dispatch and process messages.

We assume the environment to be a round-based simulation advancing in
constant, predefined time steps (simulation rounds). The starting time point of
a simulation round is called a round tick. The main principles of our method are
the following:

– Bounding Communication Bandwidth: The number of messages an
agent is allowed to dispatch during one simulation round represents the band-
width of its communication channel. By limiting this number we are able to
control the maximum communication bandwidth each individual agent can
use.

– Bounding Processing Power: First, we make two simplifying assump-
tions: (i) we assume a reactive agent that performs computation only as a



consequence of a received message, (ii) we assume that all types of messages
trigger the same amount of computation within the agent. Consequently,
the number of messages delivered to an agent in one round represents the
amount of computation the agent performs during the round. By limiting
the number of messages an agent receives, we can control the amount of
processing power an agent consumes in one simulation round.

If we apply the two introduced principles, no agent can disturb the simulation
by exploiting more processing power (e.g. because it is running on more powerful
hardware than others) and overloading the other agents’ message buffers with
(e.g. request) messages.

The mean simulated communication bandwidth r̄ available to an agent is
directly proportional to the number of messages the agent can transfer in one
simulation round:

r̄ =
mos̄m

t
, (1)

where s̄m is the mean message size in the system, and t is the duration of one
simulation round (in simulated time), mo is the number of messages the agent
can send in one simulation round. Parameter mo is configurable and can be
used to set the communication bandwidth available to a particular agent. The
processing power allocated to an agent can be derived in a similar way:

p̄ =
miīm
t

, (2)

where p̄ denotes the mean simulated computational power available to an agent,
īm is the mean number of instructions an agents needs to process one message,
and t is the duration of one simulation round. The configurable parameter mi

represents the maximum number of messages an agent can process in one simu-
lated round, which can be used to set the maximum processing power allocated
to the agent.

The parameters mi and mo can be set independently for each agent to set
its communication and processing bounds. The parameters are computed using
the mean message size and the mean number of instructions to process a mes-
sage. Clearly, the use of mean values might yield unintended behaviour in some
situations (e.g. a trivial problem is assumed to consume the same amount of pro-
cessing time as a complex problem). Nevertheless, in all our testing scenarios,
the method provided us with satisfactory results.

3.1 Multi-Agent Simulation Architecture

A multi-agent simulation typically consists of two parts. The first part is an
environment simulator that simulates the state of the world. The second part
are the individual agents acting in the simulated world. We assume that the
agents are developed on top of a distributed agent platform, which is extended
with the synchronization mechanism explained in the following section and the
buffered communication as presented in Section 3.3.



3.2 Synchronization Mechanism

Our communication and computation bounding method requires the simulation
to be synchronized with the reasoning process of the individual agents. The
following mechanism ensures that the simulation will not proceed to the next
simulation round until all the agents have finished their message processing.

The mechanism is based on two signals that the agents use to control the
counter of pending messages maintained by the simulation. Whenever an agent
sends a message, it also sends an increase counter signal (ICS). When an agent
processes a message, it sends a decrease counter signal (DCS). The simulation
round cannot be finished (i.e. next round tick generated) if the number of DCS
generated during the current round is lower then number of ICS. Such a situation
occurs if (i) some agents still process messages or (ii) some messages are still
being transferred.

Further, each round tick signal is followed by an ICS send by all agents. This
implies that the round can not be finished before all agents process the signal
and all the other messages exchanged during this round. To maintain causality
and consistency of the synchronization mechanism, we need to ensure that (i)
the order of the control signals sent by an agent is maintained, and (ii) an agent
sends one DCS after it has processed all messages, i.e. all messages to other
agents and the corresponding ICS were sent before it.

In Figure 2, we show an example run of a simulation consisting of four rounds.
The round ticks are labelled in the simulation time (i.e. the time observed by
the simulated entities). The extra time is used to virtually increase the com-
munication bandwidth and/or processing power for the agents. The processing
power is directly proportional to the amount of extra time, since as the extra
time increases, the time an agent can use for processing increases as well. In
other words, more physical time for processing means more computation power
from the perspective of the agent, provided that the simulation time is stalled.

Fig. 2. Counting the Pending Messages

In the presented approach, the amount of extra time is controlled by the
counter of pending messages c (see Figure 3). Each ICS sent by an agent incre-
ments the counter of pending messages ck+1 = ck + 1 (in Figure 2 denoted by



a rising edge) and analogically, each DCS decreases the counter ck+1 = ck − 1
(in Figure 2 denoted by a falling edge). If c > 0, then there are unprocessed
messages in the system. In such a situation, the simulation time is paused until
c = 0. Only then the next round tick can be generated.

In its basic form, the counter of pending messages pauses the simulation
until all pending messages are processed, which corresponds to a situation in
which all agents have infinite communication and processing bounds. That is,
the simulation will wait for a conversation of arbitrary length to finish, even for
an infinite one. Since we want to simulate real machines and real communication
channels, we want to be able to interrupt conversations after a predefined number
of messages and finish the simulation round in finite real time.

This leads us to the concept of three message buffers which allow us to reliably
interrupt a conversation between two agents at any point.

3.3 Buffered Communication

In the classical model, an agent uses one message queue (buffer), in which it
stores all incoming messages. These messages are then one by one processed by
the agent’s deliberation cycle. Message sending is typically realised by remote
addition of the message to the recipients message queue.

In three message buffers concept, an agent uses two additional queues for
message processing. The first additional queue buffers the incoming messages,
the second queue buffers the outgoing ones. In this scheme, a sent message may
be buffered before it is delivered to the recipient’s message queue. Similarly, a
received message may be stalled in the agent’s incoming message buffer before
it gets processed by the agent2. The two additional message buffers let us safely
interrupt any conversation between two agents.

Figure 3 shows the principle of three message buffers based communication.
The message processing algorithm is the following:

– When an agent receives a round tick, it checks the outgoing message buffer
and dispatches the messages (it sends one ICS for each message) until the
number of sent messages during this round m′

o reaches mo or until the buffer
is empty. Then, the agent checks the incoming message buffer and processes
the messages until the number of messages processed during this round m′

i

reaches mi. Finally, after this step is done, the agent sends DCS.
– When the agent receives a message in its main message queue3, it performs

the following. If the number of messages processed during this round m′
i is

smaller than mi, then it increases m′
i by one and processes the message as

usual. Otherwise, the message is added to the incoming message queue. The
agents sends DCS in both cases.

2 The main message queue and the incoming message queue are kept separate, so that
the concept can be implemented as an extension of existing multi-agent system or
platform.

3 Shown as the widest buffer connected to ACC in Figure 3.



Fig. 3. Three Message Buffers Communication

– When the agents attempts to send a message, we do the following. If the
number of messages sent during this round m′

o is smaller than mo, the agent
sends ICS, dispatches the message and increases m′

o by one. Otherwise, the
message is buffered in the outgoing message queue.

We like to note that the presented mechanism can be implemented transpar-
ently in the message transport layer of most agent platforms. The code specifying
the agents running on the platform may stay intact.

4 Illustration

In this section, we present an illustrative example that explains the proposed con-
cept in an intuitive form. In our simple multi-agent system, there are only eight
messages and two agents. The roles of the two agents are clearly distinguished.
The sender agent sends messages, while the receiver agent receives them. The
outgoing message limit is set to mo = 5 messages. The incoming message limit
is set to mi = 3 messages.

The values of mo and mi were chosen based on the following motivation.
Let’s assume we want to simulate the communication throughput of human
speech. The average sentence (message) is s̄m = 90 bytes long. The communi-
cation bandwidth of human speech is approximately r̄ = 7.5 bytes per second
(which is about 12 words spoken in 10 seconds). Further, we want to perform
the simulation with the granularity of 1 minute, therefore t = 60 seconds. Using
Formula 3, we can compute the maximum number of outgoing messages in a
simulation round:

mo =
r̄t

s̄m
= 5. (3)



We can control the processing power in a similar manner. Let’s assume that the
sentences contain arithmetic exercises, where each of them contains on average
īm = 2 arithmetic operations (instructions). Each operation can be solved by a
human in 10 seconds (p̄ = 1/10). Using Formula 4, we can compute the number
of incoming messages:

mi =
p̄t

īm
= 3. (4)

The proposed scenario running on a single-core 2.0GHz computer (for sim-
plification, let us assume one operation can be done in one tact) would be the-
oretically able to simulate 20 · 109 simulated seconds in one real second. The
result is depicted in Figure 4 as a sequential diagram.

Fig. 4. A sequence diagram showing communication based on three message buffers
for one sender and one receiver, where mo = 5 and mi = 3

The experiment has illustrated a typical message passing process in a system
that employs the communication model based on three message buffers and the
synchronization model based pending message counter.

5 Evaluation

The presented mechanism was applied in i-Globe project[14]. In this project, we
explored the methods of mixed-initiative planning and decision making [5]. We
created a multi-agent simulation of geographically distributed mobile units oper-
ating on an hostile island. The agents (ground units) were programmed to fulfil



strategic goals that were generated for them by mid and long-term planners. The
agents used their tactical planners to generate their tactical plans. The execution
of each agent’s individual plan was simulated in a simulated environment.

A typical communication message between two agents contained one task
request (̄im = 1). The computation time of a planner used in the scenario was
78ms (p̄ = 1/0.078

.
= 12.8). The duration of a simulation round is 100ms, which

corresponded to t = 10s simulated time. Using Formula 5, we computed the
value of mi:

mi =
p̄t

īm
=

12.8 · 10

1
= 128. (5)

In this scenario, an agent’s communication bandwidth was not limited (mo =
∞). Instead, we wanted to maintain a fair distribution of processing power. The
adapted system succeeded to eliminate the manifestations of unfair processing
power distribution (e.g. some of the agents being overloaded by task request
from the faster processing agents).

Further, we tested the mechanism in a MANET (mobile ad-hoc network)
scenario. The scenario involved a number of mobile routing units that had to
establish and maintain network links between them. A simulation round was
100ms long and the communication bandwidth has been set to 54 Mbps. The
mean size of one message was experimentally measured to be 200 bytes. Using
Formula 6, we computed the value of mo to be 3375.

mo =
r̄t

s̄m
=

6.75 · 106 · 0.1
200

= 3375. (6)

We have successfully used the framework to limit the bandwidth available to
each agent.

6 Conclusion

We have designed a mechanism that allows for implementation of agents that are
communication and computation bounded. Using this mechanism, a multi-agent
simulation can be distributed over a number of different computers, without wor-
rying about some of the agents having communication or processing advantage
over the others. Moreover, the mechanism provides robust round tick synchro-
nization for distributed asynchronous simulations.

We designed the mechanism in such a way that it can be implemented on
top of most existing agent platforms. The agents themselves may stay intact.

Since the values of mi and mo are set in the design time and based on the
average message size and the average amount of processing a received message
triggers, potential future work would be to generalize the approach in the di-
rection of run-time analysis of the messages being sent. Then, we would be
limiting the maximum number of outgoing messages based on the sum of their
actual lengths instead of relying on their mean length. Similarly, our current ap-
proach to computational power bounding is based on a strong assumption that
the amount of computation an agent performs is proportional to the number of



messages it receives. To relax this assumption, we envision a generalised mech-
anism that would count the number of instructions the agent performs during
one simulation round. As soon as the count exceeds a predefined threshold, the
simulation engine will stop the agent’s execution thread.

Acknowledgements The presented work was supported by the U.S. Army
Communications-Electronics Research, Development and Engineering Center
grant no. W911NF-08-1-0521, Czech Republic Ministry of Education, Youth
and Sports, grant no. MSM6840770038, the Grant Agency of the Czech Techni-
cal University in Prague, grant no. SGS10/189/OHK3/2T/13 and the research
programme no. 1M0567 funded by the Ministry of Education of the Czech Re-
public.

References

1. Wang, F., Turner, S.J., Wang, L.: Agent Communication in Distributed Simulations.
In: Multi-Agent and Multi-Agent-Based Simulation, Joint Workshop MABS 2004,
New York, NY, USA, July 19, 2004.

2. Luke, S., Cioffi-Revilla, C., Panait, L, Sullivan, K.: MASON: A New Multi-Agent
Simulation Toolkit. In: Proceedings of the 2004 Swarmfest Workshop, 2004.

3. Gulyas, L., Bartha, S.: FABLES: A Functional Agent-Based Language for Simu-
lations. In: Proceedings of The Agent 2005 Conference on: Generative Social Pro-
cesses, Models, and Mechanisms. Chicago, IL: Argonne National Lab., 2005.

4. Sislak, D., Rehak, M., Pechoucek, M.: A-globe: Multi-Agent Platform with Ad-
vanced Simulation and Visualization Support. In: Web Intelligence. IEEE Computer
Society, 2005.

5. Komenda, A., Pěchouček, M., B́ıba, J., Vokř́ınek, J.: Planning and Re-planning in
Multi-actors Scenarios by means of Social Commitments. In: Proceedings of Work-
shop on Agent Based Computing V, 2008.

6. Šǐslák, D., Volf, P., Jakob M., Pěchouček, M.: Distributed Platform for Large-Scale
Agent-Based Simulations. In: Agents for Games and Simulations, LNAI 5920, 2010

7. Šǐslák, D., Volf, P., Pěchouček, M.: Agent-Based Cooperative Decentralized Airplane
Collision Avoidance. IEEE Transactions on Intelligent Transportation Systems, 2011

8. Wilensky, U., Rand, W.: An introduction to agent-based modeling: Modeling nat-
ural, social and engineered complex systems with NetLogo. Cambridge, MA: MIT
Press.

9. Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: JADE - a Java agent development
framework. In: Multi-Agent Programming: Languages, Platforms and Applications.
Kluwer, 2005.

10. AgentLink - Agent Software,
http://eprints.agentlink.org/view/type/software.html

11. ns-3 Network Simulator, http://www.nsnam.org/
12. Ahrenholz, J., Danilov, C., Henderson, T.R., Kim, J.H.: CORE: A real-time net-

work emulator. In: Military Communications Conference, 2008. IEEE 2008
13. Ahoy Project, http://ahoy.googlecode.com
14. Komenda, A., Vokrinek, J., Pechoucek M., Wickler G., Dalton, J., Tate, A.: I-

Globe: Distributed Planning and Coordination of Mixed-initiative Activities. In:
Proceedings of Knowledge Systems for Coalition Operations (KSCO 2009).


